To describe a physical object/variable

Qualitative description of one of its characteristics.

Dimension

Ex: Mass

Quantitative tool to provide a numerical magnitude to the characteristic. (as per standards)

Unit

Ex: kg

Dimensions/Units

Primary (Fundamental) Dimensions/Units

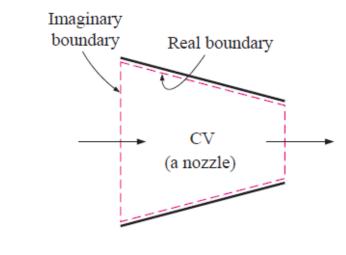
Secondary (Derived) Dimensions/Units

Primary Dimensions	Primary Units (SI)
Length [L]	m
Mass [M]	kg
Time [T]	S
Temperature [O]	Κ
Secondary Dimensions	Secondary Units
Secondary Dimensions	Secondary Onits
Velocity [LT ⁻¹]	m/s
Acceleration [LT ⁻²]	m/s ²
Force [MLT ⁻²]	kg m/s ² \rightarrow N
Work/Energy [ML ² T ⁻²]	Nm 🗲 J
Power [ML ² T ⁻³]	J∕s → W

Standard Prefixes	
Prefix	
P, peta	
T, tera	
G, giga	
M, mega	
k, kilo	
m, milli	
μ, micro	
n, nano	
p, pico	
f, femto	

Dimensional Homogeneity

Apples + Oranges Apples + Apples


Every term in an equation must have the same dimension.

In a lab experiment there is water flowing on a flat surface and measurements are taken of the velocity of water at different heights, y, above the surface. A student analyses the measured data and reports that the velocity distribution within the range of measured y is given by,

$$u = 0.31 + 6.4y + 2.1x10^3y^3$$

With velocity in m/s and height in m. would the expression be valid in any system of units?

System & Control Volume

(a) A control volume (CV) with real and imaginary boundaries

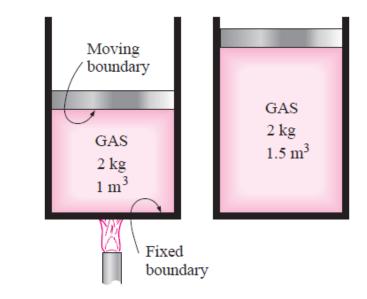
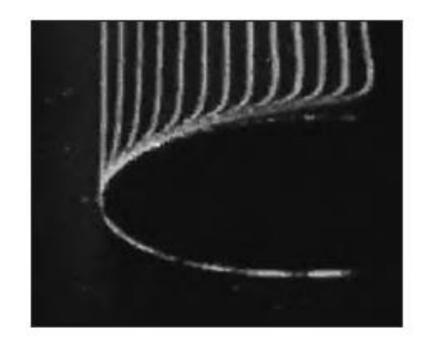
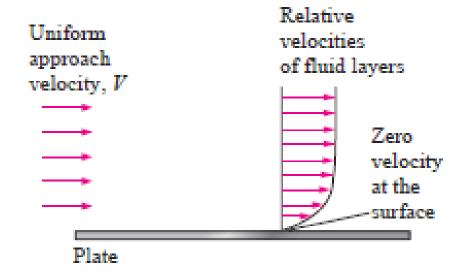




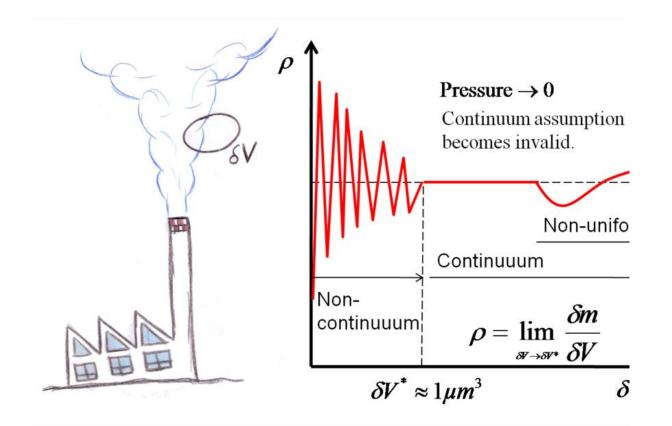
FIGURE 1–24 A closed system with a moving boundary.

The No-Slip Condition

- A flow is often confined by solid surfaces.
- Its important to know how it affects the flow.
- Experimentally observed fact that fluid moves with solid boundary
 - Zero velocity if stationary boundary.
- Reason: Viscosity
- Responsible for the development of the velocity profile.
- Flow region adjacent to the wall where a velocity gradient exist is called the **boundary layer**.
- Causes drag.
- Similar condition in heat transfer: No-Temperature-Jump Condition

Concept of Continuum

For easy mathematical analysis,


- We assume that there is **no discontinuity** of matter, and hence of any property, in space and time.
- Gives validity to the definition of properties as a function of space and time.
- At normal conditions this assumption is valid, since due to the average effect of a large number of molecules the properties appear to vary smoothly or remain constant within a system.
 - Around 3x10¹⁶ molecules of a gas per mm³ at STP

Exceptions to the continuum assumption

- When Pressure → 0, for a given volume
- Or when Volume → 0, for a given pressure
- In both the cases the number of molecules occupying the volume becomes small, which can lead to discontinuity.

Knnudsen Number $\left(\frac{\lambda}{r}\right)$

 $\frac{\lambda}{L} < 0.01, Continuum Assumption is valid.$ $0.01 < \frac{\lambda}{L} < 0.1, Slip Flow.$ $0.1 < \frac{\lambda}{L} < 0.01, Transition Flow.$ $\frac{\lambda}{L} > 10, Free Molecular Flow.$ Where λ is the mean free path of the molecule And L is the characteristic Dimension of the system

